login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262768
a(n) = binomial(2*n+2,n)-2*binomial(2*n,n)+binomial(2*n-2,n).
0
0, 0, 4, 20, 85, 344, 1365, 5368, 21021, 82160, 320892, 1253240, 4896034, 19137104, 74847175, 292929840, 1147223325, 4496006880, 17631691440, 69189377400, 271676550390, 1067383059600, 4195964793930, 16503454480656, 64943823784050, 255687666536224
OFFSET
0,3
FORMULA
G.f.: (-2*x^3-3*x^2-2*x+1)/(2*x^2*sqrt(1-4*x))-1/(2*x^2)+1/2.
G.f. satisfies B'(x)*(1-x/B(x))^2, where B(x)+1 is g.f. of A000108.
a(n) = Sum_{k=0..n}(binomial(k,n-k)*2^(2*k-n)*binomial(n-1,k-2)).
Conjecture: -2*(n+2)*(49*n-95)*a(n) +325*(n-1)*(n+1)*a(n-1) +2*(67*n-38) *(2*n-5)*a(n-2)=0. - R. J. Mathar, Jun 07 2016
MATHEMATICA
Table[Binomial[2 n + 2, n] - 2 Binomial[2 n, n] + Binomial[2 n - 2, n], {n, 0, 40}] (* Vincenzo Librandi, Oct 01 2015 *)
PROG
(Maxima)
B(x):=(1-sqrt(1-4*x))/(2*x)-1;
taylor(diff(B(x), x)*(1-x/B(x))^2, x, 0, 10);
(Magma) [Binomial(2*n+2, n)-2*Binomial(2*n, n)+Binomial(2*n-2, n): n in [0..30]]; // Vincenzo Librandi, Oct 01 2015
(PARI) a(n) = binomial(2*n+2, n)-2*binomial(2*n, n)+binomial(2*n-2, n);
vector (100, n, a(n-1)) \\ Altug Alkan, Oct 01 2015
CROSSREFS
Cf. A000108.
Sequence in context: A110154 A158608 A282084 * A250003 A343361 A320935
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Sep 30 2015
STATUS
approved