login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-2*x)^2/((1-x)^4*(1-4*x)).
2

%I #8 Jul 04 2022 12:28:49

%S 1,4,14,52,203,808,3232,12936,51765,207100,828466,3313964,13255999,

%T 53024192,212097028,848388448,3393554217,13574217396,54296870230,

%U 217187481700,868749927731,3474999712024,13899998849384,55599995399032,222399981597853,889599926393388,3558399705575802,14233598822305756

%N Expansion of (1-2*x)^2/((1-x)^4*(1-4*x)).

%C Suggested by A262592.

%H Colin Barker, <a href="/A262594/b262594.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (8,-22,28,-17,4).

%F From _Colin Barker_, Oct 23 2015: (Start)

%F a(n) = 8*a(n-1)-22*a(n-2)+28*a(n-3)-17*a(n-4)+4*a(n-5) for n>4.

%F a(n) = (34+2^(7+2*n)+93*n+18*n^2-9*n^3)/162.

%F (End)

%t CoefficientList[Series[(1-2x)^2/((1-x)^4(1-4x)),{x,0,40}],x] (* or *) LinearRecurrence[ {8,-22,28,-17,4},{1,4,14,52,203},40] (* _Harvey P. Dale_, Jul 04 2022 *)

%o (PARI) a(n) = (34+2^(7+2*n)+93*n+18*n^2-9*n^3)/162 \\ _Colin Barker_, Oct 23 2015

%o (PARI) Vec((1-2*x)^2/((1-x)^4*(1-4*x)) + O(x^40)) \\ _Colin Barker_, Oct 23 2015

%Y Cf. A262592.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Oct 22 2015