login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262594
Expansion of (1-2*x)^2/((1-x)^4*(1-4*x)).
2
1, 4, 14, 52, 203, 808, 3232, 12936, 51765, 207100, 828466, 3313964, 13255999, 53024192, 212097028, 848388448, 3393554217, 13574217396, 54296870230, 217187481700, 868749927731, 3474999712024, 13899998849384, 55599995399032, 222399981597853, 889599926393388, 3558399705575802, 14233598822305756
OFFSET
0,2
COMMENTS
Suggested by A262592.
FORMULA
From Colin Barker, Oct 23 2015: (Start)
a(n) = 8*a(n-1)-22*a(n-2)+28*a(n-3)-17*a(n-4)+4*a(n-5) for n>4.
a(n) = (34+2^(7+2*n)+93*n+18*n^2-9*n^3)/162.
(End)
MATHEMATICA
CoefficientList[Series[(1-2x)^2/((1-x)^4(1-4x)), {x, 0, 40}], x] (* or *) LinearRecurrence[ {8, -22, 28, -17, 4}, {1, 4, 14, 52, 203}, 40] (* Harvey P. Dale, Jul 04 2022 *)
PROG
(PARI) a(n) = (34+2^(7+2*n)+93*n+18*n^2-9*n^3)/162 \\ Colin Barker, Oct 23 2015
(PARI) Vec((1-2*x)^2/((1-x)^4*(1-4*x)) + O(x^40)) \\ Colin Barker, Oct 23 2015
CROSSREFS
Cf. A262592.
Sequence in context: A199698 A052710 A364410 * A345242 A370891 A284765
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 22 2015
STATUS
approved