OFFSET
1,1
COMMENTS
For the index of the first of the corresponding three consecutive triangular numbers, see A165517.
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,10,-10,-1,1).
FORMULA
a(n) = a(n-1)+10*a(n-2)-10*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: -x*(x^4-x^3-10*x^2+11*x+7) / ((x-1)*(x^4-10*x^2+1)).
EXAMPLE
7 is in the sequence because T(7)+T(8) = 28+36 = 64 = 15+21+28 = T(5)+T(6)+T(7), where T(k) is the k-th triangular number.
PROG
(PARI) Vec(-x*(x^4-x^3-10*x^2+11*x+7)/((x-1)*(x^4-10*x^2+1)) + O(x^30))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Sep 24 2015
STATUS
approved