login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262398 a(n) = prime(n)! mod prime(n!). 0
0, 0, 3, 56, 511, 194, 46976, 104633, 546681, 41130177, 643108140, 7034542959, 65748733699, 1518781632657, 35097481516962, 396029533782911, 4146710666095789, 159899356955923308, 3662069108121609141, 109629928744379590001, 828180977946159463007 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Inspired by A261997.
a(n) = n and a(n) = prime(n-1) for n=3.
a(n) = 0 only for n=1 and n=2. What is the minimum value of a(n) for n > 2? Is there a possibility of observing that a(n) = 1 or a(n) = 2?
LINKS
FORMULA
a(n) = A039716(n) mod A062439(n).
EXAMPLE
a(1) = prime(1)! mod prime(1!) = 2 mod 2 = 0.
a(2) = prime(2)! mod prime(2!) = 6 mod 3 = 0.
a(3) = prime(3)! mod prime(3!) = 120 mod 13 = 3.
MATHEMATICA
Table[Mod[Prime[n]!, Prime[n!]], {n, 15}] (* Michael De Vlieger, Sep 21 2015 *)
PROG
(PARI) a(n) = prime(n)! % prime(n!);
vector(11, n, a(n))
(Magma) [Factorial(NthPrime(n)) mod NthPrime(Factorial(n)): n in [1..11]]; // Vincenzo Librandi, Sep 23 2015
CROSSREFS
Sequence in context: A285450 A280805 A198184 * A263886 A160876 A241136
KEYWORD
nonn
AUTHOR
Altug Alkan, Sep 21 2015
EXTENSIONS
a(11)-a(15) from Michael De Vlieger, Sep 21 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 09:12 EST 2023. Contains 367690 sequences. (Running on oeis4.)