|
|
A262398
|
|
a(n) = prime(n)! mod prime(n!).
|
|
0
|
|
|
0, 0, 3, 56, 511, 194, 46976, 104633, 546681, 41130177, 643108140, 7034542959, 65748733699, 1518781632657, 35097481516962, 396029533782911, 4146710666095789, 159899356955923308, 3662069108121609141, 109629928744379590001, 828180977946159463007
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
a(n) = n and a(n) = prime(n-1) for n=3.
a(n) = 0 only for n=1 and n=2. What is the minimum value of a(n) for n > 2? Is there a possibility of observing that a(n) = 1 or a(n) = 2?
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(1) = prime(1)! mod prime(1!) = 2 mod 2 = 0.
a(2) = prime(2)! mod prime(2!) = 6 mod 3 = 0.
a(3) = prime(3)! mod prime(3!) = 120 mod 13 = 3.
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) a(n) = prime(n)! % prime(n!);
vector(11, n, a(n))
(Magma) [Factorial(NthPrime(n)) mod NthPrime(Factorial(n)): n in [1..11]]; // Vincenzo Librandi, Sep 23 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|