login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262398
a(n) = prime(n)! mod prime(n!).
0
0, 0, 3, 56, 511, 194, 46976, 104633, 546681, 41130177, 643108140, 7034542959, 65748733699, 1518781632657, 35097481516962, 396029533782911, 4146710666095789, 159899356955923308, 3662069108121609141, 109629928744379590001, 828180977946159463007
OFFSET
1,3
COMMENTS
Inspired by A261997.
a(n) = n and a(n) = prime(n-1) for n=3.
a(n) = 0 only for n=1 and n=2. What is the minimum value of a(n) for n > 2? Is there a possibility of observing that a(n) = 1 or a(n) = 2?
FORMULA
a(n) = A039716(n) mod A062439(n).
EXAMPLE
a(1) = prime(1)! mod prime(1!) = 2 mod 2 = 0.
a(2) = prime(2)! mod prime(2!) = 6 mod 3 = 0.
a(3) = prime(3)! mod prime(3!) = 120 mod 13 = 3.
MATHEMATICA
Table[Mod[Prime[n]!, Prime[n!]], {n, 15}] (* Michael De Vlieger, Sep 21 2015 *)
PROG
(PARI) a(n) = prime(n)! % prime(n!);
vector(11, n, a(n))
(Magma) [Factorial(NthPrime(n)) mod NthPrime(Factorial(n)): n in [1..11]]; // Vincenzo Librandi, Sep 23 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Sep 21 2015
EXTENSIONS
a(11)-a(15) from Michael De Vlieger, Sep 21 2015
STATUS
approved