OFFSET
1,3
COMMENTS
Inspired by A261997.
a(n) = n and a(n) = prime(n-1) for n=3.
a(n) = 0 only for n=1 and n=2. What is the minimum value of a(n) for n > 2? Is there a possibility of observing that a(n) = 1 or a(n) = 2?
EXAMPLE
a(1) = prime(1)! mod prime(1!) = 2 mod 2 = 0.
a(2) = prime(2)! mod prime(2!) = 6 mod 3 = 0.
a(3) = prime(3)! mod prime(3!) = 120 mod 13 = 3.
MATHEMATICA
Table[Mod[Prime[n]!, Prime[n!]], {n, 15}] (* Michael De Vlieger, Sep 21 2015 *)
PROG
(PARI) a(n) = prime(n)! % prime(n!);
vector(11, n, a(n))
(Magma) [Factorial(NthPrime(n)) mod NthPrime(Factorial(n)): n in [1..11]]; // Vincenzo Librandi, Sep 23 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Sep 21 2015
EXTENSIONS
a(11)-a(15) from Michael De Vlieger, Sep 21 2015
STATUS
approved