login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262396
Product of the sums and differences of the square roots of the first n positive integers, combined in all possible ways.
2
1, -1, 1, 64, 4096, 23323703841, 63703464216016403230349121, 316699666163357097153212433469030615484754548657341071360000
OFFSET
0,4
COMMENTS
The series increases rapidly and the next number in the sequence has 135 decimal digits. Each element for n>1 is necessarily both an integer and a perfect square, the square roots being 1, 8, 64, 152721, 7981444995489, 562760753929551396141111705600, ...
LINKS
EXAMPLE
a(0) = 1 = (empty product).
a(1) = -1 = (sqrt(1)) * (-sqrt(1)).
a(2) = 1 = (1+sqrt(2)) * (1-sqrt(2)) * (-1+sqrt(2)) * (-1-sqrt(2)).
a(3) = 64 = (1+sqrt(2)+sqrt(3)) * (1+sqrt(2)-sqrt(3)) * (1-sqrt(2)+sqrt(3)) * (1-sqrt(2)-sqrt(3)) * (-1+sqrt(2)+sqrt(3)) * (-1+sqrt(2)-sqrt(3)) * (-1-sqrt(2)+sqrt(3)) * (-1-sqrt(2)-sqrt(3)).
MAPLE
s:= proc(n) option remember; `if`(n<2, [1, -1][1..2*n],
map(x-> [x+sqrt(n), x-sqrt(n)][], s(n-1)))
end:
a:= n-> expand(mul(t, t=s(n))):
seq(a(n), n=0..7); # Alois P. Heinz, Sep 21 2015
MATHEMATICA
s[n_] := s[n] = If[n < 2, {1, -1}[[1 ;; 2n]], {# + Sqrt[n], # - Sqrt[n]}& /@ s[n - 1]];
a[n_] := If[n == 0, 1, Times @@ Flatten[s[n], n - 1] // Expand];
a /@ Range[0, 7] (* Jean-François Alcover, Nov 24 2020, after Alois P. Heinz *)
CROSSREFS
Cf. A354913.
Sequence in context: A144320 A324493 A324490 * A318015 A320401 A203438
KEYWORD
sign
AUTHOR
Mark Bradley, Sep 21 2015
STATUS
approved