login
A262227
Eulerian numbers of type D, the complementary type.
1
0, 0, 1, 0, 4, 0, 0, 13, 10, 1, 0, 40, 112, 40, 0, 0, 121, 836, 846, 116, 1, 0, 364, 5264, 11784, 5264, 364, 0, 0, 1093, 30318, 129879, 129844, 30339, 1086, 1, 0, 3280, 165792, 1242672, 2337472, 1242672, 165792, 3280, 0, 0, 9841, 878152, 10854028, 34706584, 34706710, 10853944, 878188, 9832, 1
OFFSET
0,5
COMMENTS
Named D~(n, k) (the complementary type D triangle) in the Borowiec link.
LINKS
Anna Borowiec, Wojciech Mlotkowski, New Eulerian numbers of type D, arXiv:1509.03758 [math.CO], 2015.
Katarzyna Kril, Wojciech Mlotkowski, Permutations of Type B with Fixed Number of Descents and Minus Signs, Volume 26(1) of The Electronic Journal of Combinatorics, 2019.
FORMULA
T(n, k) = (A060187(n+1, k+1) - (-1)^k*binomial(n, k))/2.
EXAMPLE
Triangle begins:
0;
0, 1;
0, 4, 0;
0, 13, 10, 1;
0, 40, 112, 40, 0;
0, 121, 836, 846, 116, 1;
0, 364, 5264, 11784, 5264, 364, 0;
...
MATHEMATICA
T[n_, k_] := (Sum[(-1)^(k - i + 1)*(2*i - 1)^n*Binomial[n + 1, k - i + 1], {i, 1, k + 1}] - (-1)^k*Binomial[n, k])/2; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2019 *)
PROG
(PARI) B(n, k) = if( n<k || k<1, 0, sum(i=1, k, (-1)^(k-i) * binomial(n, k-i) * (2*i-1)^(n-1)));
T(n, k) = (A060187(n+1, k+1) - (-1)^k*binomial(n, k))/2;
CROSSREFS
Sequence in context: A178517 A049207 A092219 * A336731 A069026 A133851
KEYWORD
nonn,tabl
AUTHOR
Michel Marcus, Sep 15 2015
STATUS
approved