login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262204
a(n) = (2*prime(n))! / prime(n)!.
1
12, 120, 30240, 17297280, 28158588057600, 64764752532480000, 830034394580628357120000, 4299578163927654889881600000, 212850788988365112429784203264000000, 265847614191284935213187014536606662000640000000
OFFSET
1,1
COMMENTS
Inspired by simplicity of sequence formula that is (p + p)!/p! where p is n-th prime number.
FORMULA
a(n) = 2 * A075069(n).
a(n) = A001813(prime(n)). - Michel Marcus, Sep 20 2015
a(n) mod A039716(n) = 0.
EXAMPLE
For n=1, a(n) = (2*prime(n))! / prime(n)! = 4!/2! = 3*4 = 12.
For n=2, a(n) = (2*prime(n))! / prime(n)! = 6!/3! = 4*5*6 = 120.
For n=3, a(n) = (2*prime(n))! / prime(n)! = 10!/5! = 6*7*8*9*10 = 30240.
PROG
(PARI) a(n) = (2*prime(n))!/prime(n)!;
vector(10, n, a(n))
(Magma) [Factorial(NthPrime(n)+NthPrime(n)) / Factorial(NthPrime(n)): n in [1..10]]; // Vincenzo Librandi, Sep 16 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Sep 15 2015
STATUS
approved