

A262198


Numbers such that the number of distinct palindromes contained as substring in their decimal representation differs from the length thereof.


3



100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1020, 1021, 1030, 1031, 1040, 1041, 1050, 1051, 1060, 1061, 1070, 1071, 1080, 1081, 1090, 1091, 1100, 1200, 1201, 1231, 1241, 1251, 1261, 1271
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Or, numbers n such that A055642(n) != A262190(n).
a(22) = 1021 is the first term which differs from "numbers having at least two digits 0 in their decimal representation" (not in OEIS). It seems that A043490 is a subsequence.  M. F. Hasler, Jun 19 2018


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000


EXAMPLE

a(39) = 1201, containing just 3 trivial palindromes 0, 1 and 2;
1202, also of length = 4, contains exactly 4 palindromes 0, 1, 2 and 202, therefore 1202 is not a term.


PROG

(Haskell)
a262198 n = a262198_list !! (n1)
a262198_list = [x  x < [0..], a055642 x /= a262190 x]
(PARI) is(n)=#digits(n)!=A262190(n) \\ M. F. Hasler, Jun 19 2018


CROSSREFS

Cf. A055642, A262190, A262188.
Sequence in context: A072367 A172178 A036742 * A292450 A044332 A166731
Adjacent sequences: A262195 A262196 A262197 * A262199 A262200 A262201


KEYWORD

nonn,base


AUTHOR

Reinhard Zumkeller, Sep 14 2015


EXTENSIONS

Definition clarified by M. F. Hasler, Jun 19 2018


STATUS

approved



