OFFSET
0,2
COMMENTS
LINKS
FORMULA
Recurrence: a(n) = 1/n * Sum_{k = 1..n} A000182(k+1)*a(n-k).
MAPLE
MATHEMATICA
max = 15; CoefficientList[E^Sum[(-1)^n*2^(2*n+1)*(4^(n+1)-1)*BernoulliB[2*(n+1)]*x^n / (n*(n+1)), {n, 1, max}] + O[x]^max, x] (* Jean-François Alcover, Sep 18 2015 *)
PROG
(Sage)
def a_list(n):
T = [0]*(n+2); T[1] = 1
for k in range(2, n+1): T[k] = (k-1)*T[k-1]
for k in range(2, n+1):
for j in range(k, n+1): T[j] = (j-k)*T[j-1]+(j-k+2)*T[j]
@cached_function
def a(n): return sum(T[k+1]*a(n-k) for k in (1..n))//n if n> 0 else 1
return [a(k) for k in range(n)]
a_list(15) # Peter Luschny, Sep 18 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Sep 13 2015
STATUS
approved