login
A261801
Number of 9-compositions of n: matrices with 9 rows of nonnegative integers with positive column sums and total element sum n.
2
1, 9, 126, 1704, 22986, 310086, 4183260, 56435004, 761346207, 10271072557, 138563678736, 1869317246556, 25218347263608, 340212470558832, 4589695110222504, 61918074814238448, 835316485437693186, 11268981358631127288, 152026139882340589466
OFFSET
0,2
COMMENTS
Also the number of compositions of n where each part i is marked with a word of length i over a nonary alphabet whose letters appear in alphabetical order.
LINKS
Index entries for linear recurrences with constant coefficients, signature (18, -72, 168, -252, 252, -168, 72, -18, 2).
FORMULA
G.f.: (1-x)^9/(2*(1-x)^9-1).
a(n) = A261780(n,9).
a(n) = Sum_{k>=0} (1/2)^(k+1) * binomial(n-1+9*k,n). - Seiichi Manyama, Aug 06 2024
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(a(n-j)*binomial(j+8, 8), j=1..n))
end:
seq(a(n), n=0..20);
CROSSREFS
Column k=9 of A261780.
Sequence in context: A261743 A229283 A144073 * A065086 A246238 A234573
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Sep 01 2015
STATUS
approved