OFFSET
1,2
COMMENTS
An analog of A109732 such that the statement 'the sequence is a permutation of the positive integers not divisible by 3' is equivalent to the (3*n+1)-conjecture for numbers not divisible by 3.
On Aug 29 2015, Max Alekseyev noted that, while the (3*n+1)-conjecture indeed implies that the sequence is a permutation of the positive integers not divisible by 3, the opposite statement is an open question. The author cannot yet prove this, so his previous comment is only a conjecture.
In connection with this, consider the following conjecture which could be called the (n-1)/3-conjecture. Let n be any number not divisible by 3. If n==1 (mod 3) and (n-1)/3 is not divisible by 3, then set n_1 = (n-1)/3. Otherwise set n_1 = 2*n. Conjecture. There exists an iteration n_m = 1. Does the (n-1)/3-conjecture imply the (3*n+1)-conjecture?
Example: 19->38->76->25->8->16->5->10->20->40->13->4->1.
LINKS
Peter J. C. Moses, Table of n, a(n) for n = 1..10000
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Aug 28 2015
STATUS
approved