OFFSET
1,5
COMMENTS
Conjecture: 0 < a(n) < sqrt(2*n)*log(5*n) for all n > 6.
See also A261627.
Verified up to 10^9. - Mauro Fiorentini, Jul 05 2023
Conjecture verified for n < 1.2 * 10^12. Also, the 5 inside the log function can probably be replaced by 4.26. - Jud McCranie, Aug 26 2026
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588 [math.NT], 2012-2015.
EXAMPLE
a(43) = 31 since 31, 43-(31-1) = 13 and 43+(31-1) = 73 are all prime.
a(72) = 13 since 13, 72-(2*13-1) = 47 and 72+(2*13-1) = 97 are all prime.
MATHEMATICA
Do[Do[If[PrimeQ[n-(3+(-1)^n)/2*Prime[k]+1]&&PrimeQ[n+(3+(-1)^n)/2*Prime[k]-1], Print[n, " ", Prime[k]]; Goto[aa]], {k, 1, PrimePi[2n/(3+(-1)^n)]}]; Print[n, " ", 0]; Label[aa]; Continue, {n, 1, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 27 2015
STATUS
approved