login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261555 Triangle read by rows: T(n,k) is number of partitions of n having at least k distinct parts (n >= 1, k >= 1). 2
1, 2, 3, 1, 5, 2, 7, 5, 11, 7, 1, 15, 13, 2, 22, 18, 5, 30, 27, 10, 42, 38, 16, 1, 56, 54, 27, 2, 77, 71, 42, 5, 101, 99, 62, 10, 135, 131, 87, 20, 176, 172, 128, 31, 1, 231, 226, 171, 54, 2, 297, 295, 236, 82, 5, 385, 379, 311, 127, 10, 490, 488, 417, 182, 20 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
From Omar E. Pol, Sep 14 2016: (Start)
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
Row sums give A000070.
Alternating row sums give A090794.
Column 1 is A000041, n >= 1. (End)
[0, 0] together with column 2 gives A144300. - Omar E. Pol, Sep 17 2016
REFERENCES
Jacques Barbot, Essai sur la structuration de l'analyse combinatoire, Paris, Dulac, 1973, Annexe 12A, p. 74.
LINKS
FORMULA
T(n,k) = Sum_{j>=k} A116608(n,j) assuming A116608(n,j)=0 when j>A003056(n).
T(n,1) - T(n,2) = A000005(n). - Omar E. Pol, Sep 17 2016
EXAMPLE
Triangle starts:
1;
2;
3, 1;
5, 2;
7, 5;
11, 7, 1;
15, 13, 2;
22, 18, 5;
30, 27, 10;
42, 38, 16, 1;
56, 54, 27, 2;
77, 71, 42, 5;
...
MATHEMATICA
Table[DeleteCases[Map[Count[Map[Length@ Union@ # &, IntegerPartitions@ n], k_ /; k >= #] &, Range@ n], 0], {n, 19}] // Flatten (* Michael De Vlieger, Sep 14 2016 *)
CROSSREFS
Sequence in context: A356473 A328661 A345990 * A134734 A214569 A263409
KEYWORD
nonn,tabf
AUTHOR
Michel Marcus, Aug 24 2015
EXTENSIONS
More terms from Alois P. Heinz, Aug 24 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 13:58 EDT 2024. Contains 371764 sequences. (Running on oeis4.)