login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261530
Numbers k such that k^2 + 1 = p*q*r*s where p,q,r,s are distinct primes and the sum p+q+r+s is a perfect square.
0
173, 187, 477, 565, 965, 1237, 1277, 1437, 1525, 1636, 2452, 2587, 2608, 2653, 2827, 2885, 2971, 3197, 3388, 3412, 3435, 3477, 3848, 3891, 4188, 4237, 4492, 4724, 5333, 5728, 5899, 6272, 7088, 7108, 7421, 8363, 8541, 9379, 9652, 10227, 10872, 11581, 12237
OFFSET
1,1
COMMENTS
The primes in the sequence are 173, 1237, 1277, 2971, 5333, 8363, 19387, 20773, ...
The corresponding squares p+q+r+s are 121, 289, 441, 289, 529, 9025, 841, 5625, 529, 196, 5476, 3025, ...
EXAMPLE
173 is in the sequence because 173^2 + 1 = 2*5*41*73 and 2 + 5 + 41 + 73 = 11^2.
MAPLE
with(numtheory):
for n from 1 to 20000 do:
y:=factorset(n^2+1):n0:=nops(y):
if n0=4 and bigomega(n^2+1)=4 and
sqrt(y[1]+y[2]+y[3]+y[4])=floor(sqrt(y[1]+y[2]+y[3]+y[4]))
then
printf(`%d, `, n):
else
fi:
od:
PROG
(PARI) isok(n) = my(f = factor(n^2+1)); (#f~== 4) && (vecmax(f[, 2]) == 1) && issquare(vecsum(f[, 1])) ; \\ Michel Marcus, Aug 24 2015
CROSSREFS
Sequence in context: A259017 A097845 A364937 * A246135 A140002 A178652
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 24 2015
STATUS
approved