login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259017 Number of fixed tree polycubes of size n that are proper in n-4 dimensions. 1
0, 1, 172, 17041, 1382400, 104454120, 7801139200, 593322510704, 46672464052224, 3827977546598400, 328664453612830720, 29590252898580000000, 2794588822832496508928, 276747699113763664091136, 28712738456619366481920000, 3117500646133634877355274240, 353783948741967872000000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,3

LINKS

Colin Barker, Table of n, a(n) for n = 4..351

G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes.

G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes.

FORMULA

a(n) = 2^(n-7)*n^(n-9)*(n-4)*(8*n^8 - 140*n^7 + 1010*n^6 - 3913*n^5 + 9201*n^4 - 15662*n^3 + 34500*n^2 - 120552*n + 221760)/6.

PROG

(PARI) a(n) = 2^(n-7) * n^(n-9) * (n-4) * (8*n^8-140*n^7+1010*n^6 -3913*n^5 +9201*n^4-15662*n^3+34500*n^2-120552*n +221760)/6. - Colin Barker, Jun 16 2015

(MAGMA) [2^(n-7)*n^(n-9)*(n-4)*(8*n^8 - 140*n^7 + 1010*n^6 - 3913*n^5 + 9201*n^4 - 15662*n^3 + 34500*n^2 - 120552*n + 221760)/6: n in [4..20]]; // Vincenzo Librandi, Jun 20 2015

CROSSREFS

A259015 gives the total number of fixed polycubes (not necessarily trees) proper in n-4 dimensions.

Sequence in context: A264213 A250340 A035828 * A097845 A261530 A246135

Adjacent sequences:  A259014 A259015 A259016 * A259018 A259019 A259020

KEYWORD

nonn,easy

AUTHOR

Mira Shalah, Jun 16 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 19:21 EDT 2022. Contains 353778 sequences. (Running on oeis4.)