The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259017 Number of fixed tree polycubes of size n that are proper in n-4 dimensions. 1
 0, 1, 172, 17041, 1382400, 104454120, 7801139200, 593322510704, 46672464052224, 3827977546598400, 328664453612830720, 29590252898580000000, 2794588822832496508928, 276747699113763664091136, 28712738456619366481920000, 3117500646133634877355274240, 353783948741967872000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,3 LINKS Colin Barker, Table of n, a(n) for n = 4..351 G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes. G. Barequet and M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes. FORMULA a(n) = 2^(n-7)*n^(n-9)*(n-4)*(8*n^8 - 140*n^7 + 1010*n^6 - 3913*n^5 + 9201*n^4 - 15662*n^3 + 34500*n^2 - 120552*n + 221760)/6. PROG (PARI) a(n) = 2^(n-7) * n^(n-9) * (n-4) * (8*n^8-140*n^7+1010*n^6 -3913*n^5 +9201*n^4-15662*n^3+34500*n^2-120552*n +221760)/6. - Colin Barker, Jun 16 2015 (Magma) [2^(n-7)*n^(n-9)*(n-4)*(8*n^8 - 140*n^7 + 1010*n^6 - 3913*n^5 + 9201*n^4 - 15662*n^3 + 34500*n^2 - 120552*n + 221760)/6: n in [4..20]]; // Vincenzo Librandi, Jun 20 2015 CROSSREFS A259015 gives the total number of fixed polycubes (not necessarily trees) proper in n-4 dimensions. Sequence in context: A264213 A250340 A035828 * A097845 A364937 A261530 Adjacent sequences: A259014 A259015 A259016 * A259018 A259019 A259020 KEYWORD nonn,easy AUTHOR Mira Shalah, Jun 16 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)