login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of ((x-1/2)*(1/sqrt(8*x^2-8*x+1)+1)-x)/(x-1).
1

%I #19 Jan 30 2020 21:29:17

%S 1,2,8,44,264,1632,10256,65200,418144,2700224,17534208,114380928,

%T 748988928,4920379648,32413343488,214038123264,1416349369856,

%U 9389756730368,62352450867200,414660440811520,2761261291024384

%N Expansion of ((x-1/2)*(1/sqrt(8*x^2-8*x+1)+1)-x)/(x-1).

%H G. C. Greubel, <a href="/A261266/b261266.txt">Table of n, a(n) for n = 0..1000</a>

%H D. Kruchinin and V. Kruchinin, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Kruchinin/kruch9.html">A Generating Function for the Diagonal T2n,n in Triangles</a>, Journal of Integer Sequence, Vol. 18 (2015), article 15.4.6.

%F a(n) = Sum_{l=0..n}(C(n,l)*Sum_{i=l..n}(C(i+l-1,i)*C(n-l,n-i))).

%F a(n) ~ 2^((3*n-1)/2) * (1+sqrt(2))^(n-1/2) / sqrt(Pi*n). - _Vaclav Kotesovec_, Aug 13 2015

%F D-finite with recurrence: n*a(n) +(-11*n+8)*a(n-1) +2*(17*n-28)*a(n-2) +8*(-5*n+12)*a(n-3) +16*(n-3)*a(n-4)=0. - _R. J. Mathar_, Jan 25 2020

%p S := (n,k) -> simplify(binomial(2*k-1,k)*hypergeom([2*k,k-n],[k+1],-1)):

%p a := (n) -> add(binomial(n,k)*S(n,k), k=0..n):

%p seq(a(n), n=0..20); # _Peter Luschny_, Aug 13 2015

%t CoefficientList[Series[((x - 1/2)*(1/Sqrt[8*x^2 - 8*x + 1] + 1) - x)/(x - 1), {x, 0, 50}], x] (* _G. C. Greubel_, Jun 04 2017 *)

%o (Maxima)

%o a(n):=sum(binomial(n,l)*sum(binomial(i+l-1,i)*binomial(n-l,n-i),i,l,n),l,0,n);

%o (PARI) x='x+O('x^50); Vec(((x-1/2)*(1/sqrt(8*x^2-8*x+1)+1)-x)/(x-1)) \\ _G. C. Greubel_, Jun 04 2017

%Y Cf. A118376.

%K nonn

%O 0,2

%A _Vladimir Kruchinin_, Aug 13 2015