login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261266
Expansion of ((x-1/2)*(1/sqrt(8*x^2-8*x+1)+1)-x)/(x-1).
1
1, 2, 8, 44, 264, 1632, 10256, 65200, 418144, 2700224, 17534208, 114380928, 748988928, 4920379648, 32413343488, 214038123264, 1416349369856, 9389756730368, 62352450867200, 414660440811520, 2761261291024384
OFFSET
0,2
LINKS
D. Kruchinin and V. Kruchinin, A Generating Function for the Diagonal T2n,n in Triangles, Journal of Integer Sequence, Vol. 18 (2015), article 15.4.6.
FORMULA
a(n) = Sum_{l=0..n}(C(n,l)*Sum_{i=l..n}(C(i+l-1,i)*C(n-l,n-i))).
a(n) ~ 2^((3*n-1)/2) * (1+sqrt(2))^(n-1/2) / sqrt(Pi*n). - Vaclav Kotesovec, Aug 13 2015
D-finite with recurrence: n*a(n) +(-11*n+8)*a(n-1) +2*(17*n-28)*a(n-2) +8*(-5*n+12)*a(n-3) +16*(n-3)*a(n-4)=0. - R. J. Mathar, Jan 25 2020
MAPLE
S := (n, k) -> simplify(binomial(2*k-1, k)*hypergeom([2*k, k-n], [k+1], -1)):
a := (n) -> add(binomial(n, k)*S(n, k), k=0..n):
seq(a(n), n=0..20); # Peter Luschny, Aug 13 2015
MATHEMATICA
CoefficientList[Series[((x - 1/2)*(1/Sqrt[8*x^2 - 8*x + 1] + 1) - x)/(x - 1), {x, 0, 50}], x] (* G. C. Greubel, Jun 04 2017 *)
PROG
(Maxima)
a(n):=sum(binomial(n, l)*sum(binomial(i+l-1, i)*binomial(n-l, n-i), i, l, n), l, 0, n);
(PARI) x='x+O('x^50); Vec(((x-1/2)*(1/sqrt(8*x^2-8*x+1)+1)-x)/(x-1)) \\ G. C. Greubel, Jun 04 2017
CROSSREFS
Cf. A118376.
Sequence in context: A047851 A177260 A121747 * A014508 A141147 A379328
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Aug 13 2015
STATUS
approved