login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261182
Primes that contain only the digits (2, 7, 9).
2
2, 7, 29, 79, 97, 227, 229, 277, 727, 797, 929, 977, 997, 2297, 2729, 2777, 2797, 2927, 2999, 7229, 7297, 7727, 7927, 9227, 9277, 9929, 22229, 22277, 22279, 22727, 22777, 27277, 27299, 27779, 27799, 27997, 29297, 29927, 72227, 72229, 72277, 72727, 72797
OFFSET
1,1
COMMENTS
A020459, A020460 and A020471 are subsequences.
MATHEMATICA
Select[Prime[Range[2 10^4]], Complement[IntegerDigits[#], {2, 7, 9}] == {} &]
Select[Flatten[Table[FromDigits/@Tuples[{2, 7, 9}, n], {n, 5}]], PrimeQ] (* Harvey P. Dale, Dec 17 2024 *)
PROG
(Magma) [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [2, 7, 9]];
(Python)
from gmpy2 import is_prime
from itertools import product
A261182_list = [int(''.join(d)) for l in range(1, 10) for d in product('279', repeat=l) if is_prime(int(''.join(d)))] # Chai Wah Wu, Aug 11 2015
CROSSREFS
Cf. similar sequences listed in A261181.
Sequence in context: A158024 A166940 A166939 * A155186 A203969 A199581
KEYWORD
nonn,easy,base
AUTHOR
Vincenzo Librandi, Aug 11 2015
STATUS
approved