login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261064 a(n) = (3^n-1)*(n+1)/4. 2
1, 6, 26, 100, 363, 1274, 4372, 14760, 49205, 162382, 531438, 1727180, 5580127, 17936130, 57395624, 182948560, 581130729, 1840247318, 5811307330, 18305618100, 57531942611, 180441092746, 564859072956, 1765184603000, 5507375961373, 17157594341214 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Second column of A201730.

Number of non-selfintersecting broken lines in a convex (n+1)-gon. (National Math Contest "Atanas Radev" 2020, Bulgaria) - Ivaylo Kortezov, Jan 18 2020

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

National Math Contest "Atanas Radev", Problems and Solutions, problem 8.4 ("Задача 8.4" in Bulgarian), Jan 2020.

Index entries for linear recurrences with constant coefficients, signature (8,-22,24,-9).

FORMULA

G.f.: -x*(-1 + 2*x) / ( (3*x - 1)^2*(x - 1)^2 ).

a(n) = A212337(n - 1) - 2*A212337(n - 2).

a(n) = Sum_{k = 1..n} A027907(n, 2k - 1)*k . - J. Conrad, Aug 30 2016

a(n) = Sum_{k = 0..(n - 1)} binomial(n + 1, k + 2)*A001792(k). - Ivaylo Kortezov, Jan 21 2020

MATHEMATICA

LinearRecurrence[{8, -22, 24, -9}, {1, 6, 26, 100}, 30] (* Vincenzo Librandi, Aug 31 2016 *)

Table[(3^n - 1)(n + 1)/4, {n, 0, 39}] (* Alonso del Arte, Jan 19 2020 *)

PROG

(PARI) first(m)=vector(m, i, (3^i-1)*(i+1)/4); /* Anders Hellström, Aug 08 2015 */

(MAGMA) [(3^n-1)*(n+1)/4: n in [1..30]]; // Vincenzo Librandi, Aug 31 2016

CROSSREFS

Cf. A001792, A027907, A201730, A212337.

Sequence in context: A234267 A055420 A137746 * A094811 A005022 A125107

Adjacent sequences:  A261061 A261062 A261063 * A261065 A261066 A261067

KEYWORD

nonn,easy

AUTHOR

R. J. Mathar, Aug 08 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 22:04 EST 2020. Contains 332060 sequences. (Running on oeis4.)