|
|
A260899
|
|
Positive numbers k such that 1...123 = (10^(k+2) + 107) / 9 is prime.
|
|
1
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
From Robert Israel, Nov 30 2015: (Start)
All terms == 0 or 2 (mod 6), because otherwise (10^(n+2)+107)/9 is divisible by 3, 7, or 13.
a(8) > 42000 (if it exists). (End)
|
|
LINKS
|
Table of n, a(n) for n=1..7.
|
|
EXAMPLE
|
2 appears because 1123 is prime.
12 appears because 11111111111123 is prime.
|
|
MATHEMATICA
|
Select[Select[Range[10^3], EvenQ], PrimeQ[(10^(# + 2) + 107)/9] &]
Select[Range[3, 560], PrimeQ[FromDigits[PadLeft[{2, 3}, #, 1]]]&]-2 (* Harvey P. Dale, May 16 2021 *)
|
|
PROG
|
(Magma) [n: n in [1..300] | IsPrime((10^(n+2)+107) div 9)]; // Vincenzo Librandi, Nov 18 2015
(PARI) is(n)=ispseudoprime((10^(n+2)+107)/9) \\ Charles R Greathouse IV, Jun 13 2017
|
|
CROSSREFS
|
See A260898 for the actual primes.
Sequence in context: A280942 A270119 A340016 * A108969 A269130 A265485
Adjacent sequences: A260896 A260897 A260898 * A260900 A260901 A260902
|
|
KEYWORD
|
nonn,base,hard,more
|
|
AUTHOR
|
Mikk Heidemaa, Nov 17 2015
|
|
STATUS
|
approved
|
|
|
|