The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A260694 Number of up-down parking functions of length n. 1
 1, 1, 1, 4, 17, 120, 915, 9470, 104436, 1432713, 20709209, 354493902, 6343919118, 130255212146, 2780356513594, 66607482974307, 1651884203936474, 45240390673466869, 1278413274487999471, 39403978336643657797, 1249821733374560346851, 42820844948653526713511 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS A parking function (c_1, c_2, c_3, c_4, c_5 ..., c_n) is up-down if c_1 < c_2 > c_3 < c_4 > c_5... . Clearly, A000111(n) <= a(n) <= A000272(n+1). LINKS FORMULA a(2n) = A264963(2n). - Alois P. Heinz, Nov 29 2015 EXAMPLE For n = 3, the a(3) = 4 up-down parking functions are (1,3,1), (1,2,1), (1,3,2), (2,3,1). CROSSREFS Cf. A000111, A000272, A264963. Sequence in context: A240323 A335945 A206353 * A032115 A054927 A307794 Adjacent sequences:  A260691 A260692 A260693 * A260695 A260696 A260697 KEYWORD nonn AUTHOR Ran Pan, Nov 16 2015 EXTENSIONS a(0),a(10)-a(21) from Alois P. Heinz, Nov 25 2015, Nov 29 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 17:44 EDT 2021. Contains 345365 sequences. (Running on oeis4.)