login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260610
Suprafactorials: Product of first n hyperfactorials divided by the product of the first n superfactorials.
1
1, 1, 2, 18, 1728, 4320000, 699840000000, 18525482136000000000, 204051433560311070720000000000, 2399547398533110254947300351672320000000000, 77759951835586717141477466390085274435584000000000000000000, 18011357710498321908881994832212360081640749122627567616000000000000000000000000
OFFSET
0,3
LINKS
FORMULA
a(n) = A125760(n)/A055462(n).
a(n) = Product_{k=0..n} A001142(k).
a(n) = Product_{k=0..n} hyperfactorial(k)/superfactorial(k).
a(n) = Product_{i=1..n} (Product_{j=1..i} binomial(i,j)). - Pedro Caceres, Apr 13 2019
From Vaclav Kotesovec, Nov 19 2023: (Start)
a(n) = BarnesG(n+2)^(n-1) / Product_{k=1..n+1} BarnesG(k)^3.
a(n) ~ A^(2*n + 5/2) * exp(n^3/6 + 7*n^2/8 + 5*n/6 - 3*zeta(3)/(8*Pi^2) - 1/8) / ((2*Pi)^(n^2/4 + 3*n/4 + 1/2) * n^(n^2/4 + 7*n/12 + 7/24)), where A is the Glaisher-Kinkelin constant A074962. (End)
EXAMPLE
a(3) = (Hyperfactorial(3)/Superfactorial(3)) * (Hyperfactorial(2)/Superfactorial(2)) * (Hyperfactorial(1)/Superfactorial(1)) * (Hyperfactorial(0)/Superfactorial(0)) = ((3^3 * 2^2 * 1^1)/(3! * 2! * 1!)) * ((2^2 * 1^1)/(2!*1!)) * (1^1/1!) * 1 = ((27 * 4)/(6 * 2)) * (4/2) * 1 = (108/12) * (4/2) = 9 * 2 = 18.
MATHEMATICA
Table[Product[Hyperfactorial[n]/BarnesG[n+2], {n, 0, m}], {m, 0, 12}]
Table[BarnesG[n+2]^(n-1) / Product[BarnesG[k]^3, {k, 1, n + 1}], {n, 0, 12}] (* Vaclav Kotesovec, Nov 19 2023 *)
PROG
(PARI) a001142(n) = prod(m=1, n, binomial(n, m));
a(n) = prod(k=0, n, a001142(k)); \\ Michel Marcus, Aug 06 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Matthew Campbell, Jul 30 2015
STATUS
approved