login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260486
Expansion of phi(-x)^2 * phi(-x^6) / phi(-x^3) in powers of x where phi() is a Ramanujan theta function.
1
1, -4, 4, 2, -4, 0, 2, 0, -4, 0, 0, 8, -2, 0, 0, 0, -4, -8, 0, 8, 0, 0, 8, 0, -2, -4, 0, -2, 0, 0, 0, 0, -4, -4, 8, 0, 0, 0, 8, 0, 0, -8, 0, 8, -8, 0, 0, 0, -2, -4, 4, 4, 0, 0, -2, 0, 0, -4, 0, 8, 0, 0, 0, 0, -4, 0, 4, 8, -8, 0, 0, 0, 0, -8, 0, 2, -8, 0, 0, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q)^4 * eta(q^6)^3 / (eta(q^2)^2 *eta(q^3)^2 *eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ -4, -2, -2, -2, -4, -3, -4, -2, -2, -2, -4, -2, ...].
Convolution of A010815 and A257657.
EXAMPLE
G.f. = 1 - 4*x + 4*x^2 + 2*x^3 - 4*x^4 + 2*x^6 - 4*x^8 + 8*x^11 - 2*x^12 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x]^2 EllipticTheta[ 4, 0, x^6] / EllipticTheta[ 4, 0, x^3], {x, 0, n}];
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2 QPochhammer[ x]^2 QPochhammer[ -x^3] / QPochhammer[ x^3], {x, 0, n}];
a[ n_] := If[ n < 1, Boole[n == 0], -4 I^(n-1) Sum[ {1, I, -1/2, I, 1, -I/2}[[Mod[d, 6, 1]]] KroneckerSymbol[ -2, n/d], {d, Divisors[ n]}]];
a[n_]:= SeriesCoefficient[EllipticTheta[3, 0, -x]^2* EllipticTheta[3, 0, -x^6]/EllipticTheta[3, 0, -x^3], {x, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 17 2018 *)
PROG
(PARI) {a(n) = if( n<1, n==0, -4 * I^(n-1) * sumdiv(n, d, [-I/2, 1, I, -1/2, I, 1][d%6+1] * kronecker(-2, n/d)))};
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); -4 * I^(n-1) * prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, I, p==3, 1-e/2, p%8 > 4, !(e%2), e+1)))};
(PARI) {a(n) = if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 * eta(x^6 + A)^3 / (eta(x^2 + A)^2 * eta(x^3 + A)^2 * eta(x^12 + A)), n))};
CROSSREFS
Sequence in context: A222295 A371706 A103714 * A193514 A112108 A373822
KEYWORD
sign
AUTHOR
Michael Somos, Jul 26 2015
STATUS
approved