OFFSET
2,1
COMMENTS
Let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime having a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic primes with seed s. (For A260250, the seed is not an integer, so that the offset is 2.)
LINKS
Clark Kimberling, Table of n, a(n) for n = 2..200
EXAMPLE
As a triangle:
000000000
1300000000031
713000000000317
1471300000000031741
12147130000000003174121,
3121471300000000031741213
1213121471300000000031741213121,
MATHEMATICA
s0 = "000000000"; s = {ToExpression[s0]}; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s], 10, Max[StringLength[s0], Length[IntegerDigits[Last[s]]]]], Reverse[#]]&[IntegerDigits[#]]]] &]; AppendTo[s, tmp], {10}]; s0 <> ", " <> StringTake[ToString[Rest[s]], {2, -2}]
(* Peter J. C. Moses, Sep 23 2015 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Clark Kimberling, Sep 24 2015
STATUS
approved