OFFSET
0,1
COMMENTS
From Vaclav Kotesovec, Jul 21 2015: (Start)
Sum_{n>=1} (-1)^(n+1)*cos(n*x)/n = log(2*(1+cos(x)))/2.
Sum_{n>=1} cos(n*x)/n = -log(2*(1-cos(x)))/2.
(End)
LINKS
A. Dieckmann, Collection of Infinite Products and Series
Jonathan D. Weiss, The Summation of One Class of Infinite Series, Applied Mathematics, 2014, 5, 2816-2822.
Eric Weisstein's MathWorld, Inverse Nome
FORMULA
S(Pi) = Sum_{n>=1} (-1)^(n+1)*coth(n*Pi)/n = log(2) + 2*Sum_{k>=1} log(1+exp(-2*k*Pi)).
Equals Pi/6 + (1/4)*log(2).
EXAMPLE
0.69688557073828520043141526091112795605173660015258145035932743442465...
MATHEMATICA
RealDigits[Pi/6 + (1/4)*Log[2], 10, 104] // First
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Jul 20 2015
STATUS
approved