login
A260230
Decimal expansion of S(Pi), where S(x) is the series Sum_{n>=1} (-1)^(n+1)*coth(n*x)/n.
0
6, 9, 6, 8, 8, 5, 5, 7, 0, 7, 3, 8, 2, 8, 5, 2, 0, 0, 4, 3, 1, 4, 1, 5, 2, 6, 0, 9, 1, 1, 1, 2, 7, 9, 5, 6, 0, 5, 1, 7, 3, 6, 6, 0, 0, 1, 5, 2, 5, 8, 1, 4, 5, 0, 3, 5, 9, 3, 2, 7, 4, 3, 4, 4, 2, 4, 6, 5, 1, 1, 3, 9, 8, 7, 3, 4, 5, 8, 5, 1, 2, 0, 0, 6, 1, 3, 8, 3, 0, 2, 6, 3, 9, 4, 5, 7, 5, 1, 6, 5, 4, 9, 1, 9
OFFSET
0,1
COMMENTS
From Vaclav Kotesovec, Jul 21 2015: (Start)
Sum_{n>=1} (-1)^(n+1)*cos(n*x)/n = log(2*(1+cos(x)))/2.
Sum_{n>=1} cos(n*x)/n = -log(2*(1-cos(x)))/2.
(End)
LINKS
Jonathan D. Weiss, The Summation of One Class of Infinite Series, Applied Mathematics, 2014, 5, 2816-2822.
Eric Weisstein's MathWorld, Inverse Nome
FORMULA
S(Pi) = Sum_{n>=1} (-1)^(n+1)*coth(n*Pi)/n = log(2) + 2*Sum_{k>=1} log(1+exp(-2*k*Pi)).
Equals Pi/6 + (1/4)*log(2).
EXAMPLE
0.69688557073828520043141526091112795605173660015258145035932743442465...
MATHEMATICA
RealDigits[Pi/6 + (1/4)*Log[2], 10, 104] // First
CROSSREFS
Sequence in context: A198144 A154394 A126599 * A159691 A118947 A023410
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved