login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260229
a(n) = floor(e^(n!)).
0
2, 7, 403, 26489122129, 13041808783936322797338790280986488113446079415755132
OFFSET
1,1
COMMENTS
The exponential growth in the number of permutations of n elements.
Next term is too big to be included.
FORMULA
a(n) = A000149(A000142(n)).
a(n) = floor(sqrt(e^A052849(n) - e^A000142(n) + sqrt(e^A052849(n) - e^A000142(n) + sqrt(e^A052849(n) - e^A000142(n) + ...)))).
EXAMPLE
a(1) = floor(e^(1!)) = floor(e) = 2.
MATHEMATICA
Table[Floor[E^n!], {n, 1, 7}]
PROG
(PARI) default(realprecision, 100); vector(5, n, floor(exp(n!))) \\ Michel Marcus, Aug 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 20 2015
STATUS
approved