OFFSET
1,1
COMMENTS
Conjecture: a(n) exists for any n > 0. Also, for any n > 0, there are primes p and q such that pi(p*n) = q*n.
REFERENCES
Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..300
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
EXAMPLE
a(1) = 5 since pi(5*1) = 3 = prime(2*1) with 2 and 5 both prime.
a(2) = 277 since pi(277*2) = 101 = prime(13*2) with 13 and 277 both prime.
a(10) = 3089 since pi(3089*10) = 3331 = prime(47*10) with 47 and 3089 both prime.
MATHEMATICA
PQ[n_, p_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]/n]
Do[k=0; Label[aa]; k=k+1; If[PQ[n, PrimePi[Prime[k]*n]], Goto[bb], Goto[aa]]; Label[bb]; Print[n, " ", Prime[k]]; Continue, {n, 1, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jul 19 2015
STATUS
approved