The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225781 Numbers k such that both k and (k+1)/2 are primes and evil. 1
5, 277, 673, 1093, 1237, 1381, 1621, 1873, 2473, 2593, 2797, 2857, 4177, 4357, 4441, 4561, 4933, 5077, 5233, 5413, 5437, 5581, 5701, 6037, 6133, 6997, 7477, 7537, 8053, 8353, 8713, 8893, 9133, 9901, 10861, 10957, 11113, 11161, 11497, 12073, 12457, 12757 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
It seems to be the case that all primes k where (k+1)/2 is also prime share the property that they are also both either evil or odious, the sole exception being 3, which is evil but has 2 as an odious companion.
The last comment is true; for k and (k+1)/2 to be prime, k must be the number 3 or have the form 4*m + 1. The latter means its binary expansion ends in 01. Adding 1 to such a number and dividing by 2 leaves the bit count the same. Hence, both of these numbers have the same parity; they are both evil or both odious. - Jon Perry, May 25 2013
LINKS
MATHEMATICA
evilQ[n_] := EvenQ[DigitCount[n, 2, 1]]; Select[Prime[Range[1600]], PrimeQ[(#+1)/2] && And @@ evilQ /@ {#, (#+1)/2} &] (* Amiram Eldar, Aug 06 2023 *)
PROG
(Magma)
//the function Bweight determines the binary weight of a number
Bweight := function(m)
Bweight:=0;
adigs := Intseq(m, 2);
for n:= 1 to Ilog2(m)+1 do
Bweight:=Bweight+adigs[n];
end for;
return Bweight;
end function;
for i:=1 to 1000000 do
pair:=(i+1)div 2;
if (IsPrime(i) and IsPrime(pair) and (Bweight(i) mod 2 eq 0) and (Bweight(pair) mod 2 eq 0)) then i;
end if;
end for;
CROSSREFS
Cf. A005383 (both k and (k+1)/2 are primes), A001969 (evil numbers).
Sequence in context: A213958 A158115 A260197 * A368754 A057209 A216662
KEYWORD
nonn,base
AUTHOR
Brad Clardy, May 15 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 03:59 EDT 2024. Contains 372807 sequences. (Running on oeis4.)