login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259946
Number of (n+2) X (2+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000000 00000001 or 00000101.
1
60, 170, 549, 1507, 4128, 11933, 34337, 97374, 277073, 791655, 2258776, 6438153, 18360749, 52375446, 149376869, 426006811, 1215002568, 3465304429, 9883190601, 28187259534, 80391677785, 229281523567, 653922541496, 1865020964353
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 2*a(n-2) + a(n-3) + 6*a(n-4) - 14*a(n-5) - 4*a(n-6) + 2*a(n-7) - 4*a(n-8) + 4*a(n-9) for n>10.
Empirical g.f.: x*(60 + 50*x + 89*x^2 + 9*x^3 - 514*x^4 - 66*x^5 + 34*x^6 - 90*x^7 + 144*x^8 - 12*x^9) / ((1 + x - x^2)*(1 - 3*x + 2*x^2 - 6*x^3 + 2*x^4 + 6*x^5 + 4*x^7)). - Colin Barker, Dec 27 2018
EXAMPLE
Some solutions for n=4:
..0..1..0..0....0..0..0..0....0..0..1..0....0..0..0..0....1..0..0..0
..1..0..0..0....0..0..0..0....0..0..0..1....1..0..0..0....0..0..0..1
..0..0..0..0....1..0..0..1....0..0..0..0....0..0..0..0....1..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..1
..1..0..0..1....0..0..0..1....0..0..1..0....0..0..0..0....0..0..0..0
..0..0..0..0....1..0..0..0....0..0..0..1....0..0..1..0....1..0..0..1
CROSSREFS
Column 2 of A259952.
Sequence in context: A216480 A257146 A291549 * A249911 A292223 A112827
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 10 2015
STATUS
approved