The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259932 Primes whose anti-divisors sum to a prime. 1
 3, 5, 13, 41, 113, 761, 1201, 1741, 1861, 2113, 9661, 9941, 12641, 13613, 15313, 21841, 23981, 30013, 34061, 47741, 49613, 60901, 70313, 83641, 101701, 237361, 241513, 252761, 303421, 335381, 377581, 413141, 489061, 491041, 525313, 529421, 637321, 695021, 718801 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS See A066272 for definition of anti-divisor. Subsequence of A109350. Apparently, apart from 5, all terms are congruent to {1, 3} mod 5 (see A045429). LINKS Paolo P. Lava, Table of n, a(n) for n = 1..100 EXAMPLE The anti-divisor of 3 is 2, which is prime. The anti-divisors of 41 are 2, 3, 9, and 27, whose sum is 41, which is prime. The anti-divisors of 9941 are 2, 3, 9, 47, 59, 141, 337, 423, 2209, and 6627, whose sum is 9857, which is prime. MAPLE with(numtheory): P:=proc(q) local a, i, j, n; for n from 3 to q do if isprime(n) then i:=0; j:=n; while j mod 2 <> 1 do i:=i+1; j:=j/2; od; if isprime(sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^i)*2^(i+1)-6*n-2) then print(n); fi; fi; od; end: P(10^9); MATHEMATICA ad[n_] := Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]; Select[Prime@ Range@ 1250, PrimeQ[Total@ ad@ #] &] (* Michael De Vlieger, Jul 10 2015 *) CROSSREFS Cf. A000040, A045429, A066272, A066417, A109350. Sequence in context: A172023 A271667 A188583 * A178432 A236068 A057188 Adjacent sequences:  A259929 A259930 A259931 * A259933 A259934 A259935 KEYWORD nonn AUTHOR Paolo P. Lava, Jul 09 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 16:50 EDT 2021. Contains 347586 sequences. (Running on oeis4.)