OFFSET
0,3
FORMULA
E.g.f. satisfies: A(x) = exp( Series_Reversion( Integral 1/A(x)^3 dx ) ).
E.g.f. A(x) such that A(x/3)^3 is the e.g.f. of A233335.
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 37*x^3/3! + 586*x^4/4! + 13612*x^5/5! + 424621*x^6/6! +...
where log(A(x)) = Series_Reversion( Integral 1/A(x)^3 dx ):
log(A(x)) = x + 3*x^2/2! + 27*x^3/3! + 432*x^4/4! + 10206*x^5/5! + 323919*x^6/6! +...+ 3^(n-1)*A214645(n)*x^n/n! +...
and
A(x/3)^3 = 1 + x + 2*x^2/2! + 7*x^3/3! + 38*x^4/4! + 292*x^5/5! + 2975*x^6/6! +...+ A233335(n)*x^n/n! +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(serreverse(intformal(1/A^3+x*O(x^n))))); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 05 2015
STATUS
approved