login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259822
E.g.f. A(x) satisfies: A( Integral 1/A(x)^3 dx ) = exp(x).
0
1, 1, 4, 37, 586, 13612, 424621, 16827976, 815866699, 47093387797, 3170897237125, 245127016240321, 21482473673228266, 2112385883734692910, 231062843227493844112, 27913223028923592662539, 3701041353685453743060265, 535729316331363978105167557, 84263588534262286958390813305
OFFSET
0,3
FORMULA
E.g.f. satisfies: A(x) = exp( Series_Reversion( Integral 1/A(x)^3 dx ) ).
E.g.f. A(x) such that A(x/3)^3 is the e.g.f. of A233335.
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 37*x^3/3! + 586*x^4/4! + 13612*x^5/5! + 424621*x^6/6! +...
where log(A(x)) = Series_Reversion( Integral 1/A(x)^3 dx ):
log(A(x)) = x + 3*x^2/2! + 27*x^3/3! + 432*x^4/4! + 10206*x^5/5! + 323919*x^6/6! +...+ 3^(n-1)*A214645(n)*x^n/n! +...
and
A(x/3)^3 = 1 + x + 2*x^2/2! + 7*x^3/3! + 38*x^4/4! + 292*x^5/5! + 2975*x^6/6! +...+ A233335(n)*x^n/n! +...
PROG
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(serreverse(intformal(1/A^3+x*O(x^n))))); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A001518 A185082 A377741 * A345102 A036245 A133471
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 05 2015
STATUS
approved