login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259743 Expansion of f(-x)^3 * psi(x^4) in powers of x where psi(), f() are Ramanujan theta functions. 1
1, -3, 0, 5, 1, -3, -7, 5, 0, 0, 2, 0, 1, -3, 9, -6, 0, 0, -7, -11, 0, 13, 9, 0, 1, 10, 0, -6, -15, 0, -7, 0, -15, 13, 9, 0, 17, 0, 0, -11, 3, -3, 0, 5, 0, -6, -7, 0, 17, -19, 9, 0, -15, 0, 0, 10, 0, -19, 0, 21, 18, 10, 0, 5, 0, 0, -30, 21, -15, -19, -14, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/8) * eta(q)^3 * eta(q^8)^2 / eta(q^4) in powers of q.
Euler transform of period 8 sequence [ -3, -3, -3, -2, -3, -3, -3, -4, ...].
G.f.: Product_{k>0} (1 - x^k)^3 * (1 + x^(4*k)) * (1 - x^(8*k)).
EXAMPLE
G.f. = 1 - 3*x + 5*x^3 + x^4 - 3*x^5 - 7*x^6 + 5*x^7 + 2*x^10 + x^12 + ...
G.f. = q^5 - 3*q^13 + 5*q^29 + q^37 - 3*q^45 - 7*q^53 + 5*q^61 + 2*q^85 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 EllipticTheta[ 2, 0, x^2] / (2 x^(1/2)) {x, 0, n}];
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 QPochhammer[ x^8]^2 / QPochhammer[ x^4], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^8 + A)^2 / eta(x^4 + A), n))};
CROSSREFS
Sequence in context: A229979 A050925 A086696 * A247015 A241972 A357823
KEYWORD
sign
AUTHOR
Michael Somos, Jul 05 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 23:37 EST 2023. Contains 367681 sequences. (Running on oeis4.)