OFFSET
0,2
COMMENTS
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/8) * eta(q)^3 * eta(q^8)^2 / eta(q^4) in powers of q.
Euler transform of period 8 sequence [ -3, -3, -3, -2, -3, -3, -3, -4, ...].
G.f.: Product_{k>0} (1 - x^k)^3 * (1 + x^(4*k)) * (1 - x^(8*k)).
EXAMPLE
G.f. = 1 - 3*x + 5*x^3 + x^4 - 3*x^5 - 7*x^6 + 5*x^7 + 2*x^10 + x^12 + ...
G.f. = q^5 - 3*q^13 + 5*q^29 + q^37 - 3*q^45 - 7*q^53 + 5*q^61 + 2*q^85 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 EllipticTheta[ 2, 0, x^2] / (2 x^(1/2)) {x, 0, n}];
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 QPochhammer[ x^8]^2 / QPochhammer[ x^4], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^8 + A)^2 / eta(x^4 + A), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 05 2015
STATUS
approved