login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259743
Expansion of f(-x)^3 * psi(x^4) in powers of x where psi(), f() are Ramanujan theta functions.
1
1, -3, 0, 5, 1, -3, -7, 5, 0, 0, 2, 0, 1, -3, 9, -6, 0, 0, -7, -11, 0, 13, 9, 0, 1, 10, 0, -6, -15, 0, -7, 0, -15, 13, 9, 0, 17, 0, 0, -11, 3, -3, 0, 5, 0, -6, -7, 0, 17, -19, 9, 0, -15, 0, 0, 10, 0, -19, 0, 21, 18, 10, 0, 5, 0, 0, -30, 21, -15, -19, -14, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-5/8) * eta(q)^3 * eta(q^8)^2 / eta(q^4) in powers of q.
Euler transform of period 8 sequence [ -3, -3, -3, -2, -3, -3, -3, -4, ...].
G.f.: Product_{k>0} (1 - x^k)^3 * (1 + x^(4*k)) * (1 - x^(8*k)).
EXAMPLE
G.f. = 1 - 3*x + 5*x^3 + x^4 - 3*x^5 - 7*x^6 + 5*x^7 + 2*x^10 + x^12 + ...
G.f. = q^5 - 3*q^13 + 5*q^29 + q^37 - 3*q^45 - 7*q^53 + 5*q^61 + 2*q^85 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 EllipticTheta[ 2, 0, x^2] / (2 x^(1/2)) {x, 0, n}];
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^3 QPochhammer[ x^8]^2 / QPochhammer[ x^4], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^8 + A)^2 / eta(x^4 + A), n))};
CROSSREFS
Sequence in context: A229979 A050925 A086696 * A247015 A241972 A357823
KEYWORD
sign
AUTHOR
Michael Somos, Jul 05 2015
STATUS
approved