login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259713 a(n) = 3*2^n - 2*(-1)^n. 3
1, 8, 10, 26, 46, 98, 190, 386, 766, 1538, 3070, 6146, 12286, 24578, 49150, 98306, 196606, 393218, 786430, 1572866, 3145726, 6291458, 12582910, 25165826, 50331646, 100663298, 201326590, 402653186, 805306366, 1610612738, 3221225470, 6442450946, 12884901886 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Inverse binomial transform of 3^n, with 3 (second term) excluded.

a(n) mod 9 gives A010689.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,2).

FORMULA

a(n) = a(n-1) + 2*a(n-2) for n>1, a(0)=1, a(1)=8.

a(n) = 2*a(n-1) - 6*(-1)^n for n>0, a(0)=1.

a(4n+2) = 10*A182460(n); a(2n) = A096045(n), a(2n+1) = A140788(n).

a(n) = 3*A014551(n+1) - A201630(n).

a(n+2) - a(n) = a(n) + a(n+1) = A005010(n).

G.f.: -(7*x+1) / ((x+1)*(2*x-1)). - Colin Barker, Jul 03 2015

MATHEMATICA

Table[3 2^n - 2 (-1)^n, {n, 0, 50}] (* Vincenzo Librandi, Jul 04 2015

PROG

(PARI) Vec(-(7*x+1)/((x+1)*(2*x-1)) + O(x^100)) \\ Colin Barker, Jul 03 2015

(MAGMA) [3*2^n-2*(-1)^n: n in [0..40]]; // Vincenzo Librandi, Jul 04 2015

CROSSREFS

Cf. A000244, A005010, A007283, A010689, A096045, A140788, A182460, A201630.

Sequence in context: A271313 A161959 A236751 * A096516 A024869 A108940

Adjacent sequences:  A259710 A259711 A259712 * A259714 A259715 A259716

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Jul 03 2015

EXTENSIONS

Typo in data fixed by Colin Barker, Jul 03 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 8 14:36 EDT 2020. Contains 336298 sequences. (Running on oeis4.)