login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259573
Number of distinct differences in row n of the reciprocity array of 0.
3
1, 2, 3, 4, 3, 4, 3, 6, 5, 6, 3, 8, 3, 6, 7, 8, 3, 8, 3, 8, 9, 6, 3, 12, 5, 6, 7, 10, 3, 14, 3, 10, 9, 6, 9, 14, 3, 6, 9, 12, 3, 12, 3, 12, 11, 6, 3, 18, 5, 10, 9, 12, 3, 12, 9, 14, 9, 6, 3, 22, 3, 6, 13, 12, 9, 14, 3, 12, 9, 14, 3, 18, 3, 6, 13, 12, 9, 16
OFFSET
1,2
COMMENTS
The "reciprocity law" that Sum{[(n*k+x)/m] : k = 0..m} = Sum{[(m*k+x)/n] : k = 0..n} where x is a real number and m and n are positive integers, is proved in Section 3.5 of Concrete Mathematics (see References).
REFERENCES
R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989, pages 90-94.
LINKS
EXAMPLE
In the array at A259572, row 4 is (0,2,3,6,6,8,9,12,12,14,15,...), with differences (2,1,3,0,2,1,3,0,2,1,3,0, ...), and distinct differences {0,1,2,3}, so that a(4) = 4. Example corrected by Antti Karttunen, Nov 30 2021
MATHEMATICA
x = 0; s[m_, n_] := Sum[Floor[(n*k + x)/m], {k, 0, m - 1}];
t[m_] := Table[s[m, n], {n, 1, 1000}];
u = Table[Length[Union[Differences[t[m]]]], {m, 1, 120}] (* A259573 *)
PROG
(PARI)
A259572(m, n) = ((m*n - m - n + gcd(m, n))/2); \\ After Witold Dlugosz's formula for A259572.
A259573(n) = #Set(vector(n, k, A259572(n, 1+k)-A259572(n, k))); \\ Antti Karttunen, Nov 30 2021
CROSSREFS
Sequence in context: A304730 A323374 A324197 * A108015 A344322 A030398
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 30 2015
STATUS
approved