The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A259410 a(n) = 1 - sigma(n) + sigma(n)^2 - sigma(n)^3 + sigma(n)^4. 3
 1, 61, 205, 2101, 1111, 19141, 3641, 47461, 26521, 99451, 19141, 593461, 35855, 318505, 318505, 894661, 99451, 2255605, 152381, 3039331, 1016801, 1634221, 318505, 12747541, 894661, 3039331, 2497561, 9661961, 783871, 26505721, 1016801, 15506821, 5200081 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Robert Price, Table of n, a(n) for n = 1..10000 OEIS Wiki, Cyclotomic Polynomials at x=n, n! and sigma(n) FORMULA a(n) = 1 - A000203(n) + A000203(n)^2 - A000203(n)^3 + A000203(n)^4. a(n) = A060884(A000203(n)). - Michel Marcus, Jun 26 2015 MATHEMATICA Table[1 - DivisorSigma[1, n] + DivisorSigma[1, n]^2 - DivisorSigma[1, n]^3 + DivisorSigma[1, n]^4, {n, 1, 10000}] Table[Cyclotomic[10, DivisorSigma[1, n]], {n, 1, 10000}] PROG (PARI) a(n) = polcyclo(10, sigma(n)) \\ Michel Marcus, Jun 26 2015 (Magma) [(1 - DivisorSigma(1, n) + DivisorSigma(1, n)^2 - DivisorSigma(1, n)^3 + DivisorSigma(1, n)^4): n in [1..35]]; // Vincenzo Librandi, Jun 27 2015 CROSSREFS Cf. A000203 (sum of divisors of n). Cf. A259411 (indices of primes in this sequence), A259412 (corresponding primes). Sequence in context: A364716 A245865 A357780 * A234925 A171585 A038643 Adjacent sequences: A259407 A259408 A259409 * A259411 A259412 A259413 KEYWORD easy,nonn AUTHOR Robert Price, Jun 26 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 05:37 EST 2023. Contains 367575 sequences. (Running on oeis4.)