login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259363
Number of distinct elements in the Gram matrix of the first M rows of the Kronecker product (Sylvester) Hadamard matrix.
0
0, 1, 2, 3, 2, 4, 4, 3, 2, 4, 5, 6, 4, 5, 4, 3, 2, 4, 5, 6, 5, 8, 7, 6, 4, 5, 6, 7, 4, 5, 4, 3, 2, 4, 5, 6, 5, 8, 7, 6, 5, 8, 9, 10, 7, 8, 7, 6, 4, 5, 6, 7, 6, 9, 8, 7, 4, 5, 6, 7, 4, 5, 4, 3, 2, 4, 5, 6, 5, 8, 7, 6, 5, 8, 9, 10, 7, 8, 7, 6, 5, 8, 9, 10, 9, 12, 11, 10, 7, 8, 9, 10, 7, 8, 7, 6, 4, 5, 6, 7, 6, 9, 8, 7, 6, 9, 10, 11, 8, 9, 8, 7, 4, 5, 6, 7, 6, 9, 8, 7, 4, 5, 6, 7, 4, 5, 4, 3, 2, 4, 5, 6, 5, 8, 7, 6, 5, 8, 9
OFFSET
0,3
COMMENTS
Let H(2) = [1, 1; 1, -1]; let H(2^(n+1)) be the Kronecker product of H(2^n) and H(2). For M less than or equal to 2^n, let A(2^n,M) be the submatrix of H(2^n) consisting of its first M rows, and let G(2^n,M)=(A(2^n,M))'A(2^n,M). Then a(M) is the number of distinct elements of G(2^n,M), which depends only on M.
FORMULA
Recurrence for M>0: let b be the base-2 representation of M. Map b to a word w on the alphabet {1,I,O} by splitting b into runs of 0's and 1's and letting O represent a string of one or more 0's, I a string of two or more 1's, and 1 an isolated 1. Then a(0)=0, a(n)=s(w), where s(1)=1, s(1O1)=4, s(uO)=s(u)+1, s(vI)=s(v1)+2, s(vIO1)=s(v1)+4, s(v1O1)=s(v1)+4, where u is a nonempty word and v is an arbitrary word.
Closed form: s(1)=1, s(1O)=2, s(w)=4[(|w|+1)/2]+a(w)+b(w)+c(w), where |w| is the length of w, [x] is the greatest integer function, and a, b, c are defined by a(w)=0 if w ends in O, -1 if w ends in 1 or I; b(w)=1 if first letter of w is I, 0 if first letter of w is 1; c(w)=-1 if last non-O letter of w is I, -3 if last non-O letter of w is 1.
Equivalently, for n > 1, a(n) = 4*A069010(n) - A000035(n) + A079944(n-2) + 4 - A099545(n-1) + A036987(n-1).
EXAMPLE
H(4)=[1,1,1,1;1,-1,1,-1;1,1,-1,-1;1,-1,-1,1], A(4,3)=[1,1,1,1;1,-1,1,-1;1,1,-1,-1], G(4,3)=[3,1,1,-1;1,3,-1,1;1,-1,3,1;-1,1,1,3]. Since G(4,3) has 3 distinct elements, a(3)=3.
MATHEMATICA
mToWord[m_] := Module[{binary, sbin, lst, j},
binary = IntegerDigits[m, 2];
sbin = Split[binary];
lst = {};
For[j = 1, j <= Length[sbin], j++,
If[sbin[[j, 1]] == 1 && Length[sbin[[j]]] > 1, AppendTo[lst, 11]];
If[sbin[[j]] == {1}, AppendTo[lst, 1]];
If[sbin[[j, 1]] == 0, AppendTo[lst, 0]]
];
lst
]
s[{1}]=1
s[{1, 0}]=2
s[w_] := Module[{b, newW, a, c},
If[w[[1]] == 11,
b = 1,
b = 0
];
If[w[[-1]] != 0,
newW = Append[w, 0];
a = -1,
newW = w;
a = 0
];
If[newW[[-2]] == 1,
c = -3,
If[newW[[-2]] == 11,
c = -1
]
];
a + b + c + 2 Length[newW]
]
numberDistinctGramValues[m_]:=If[m==0, 0, s[mToWord[m]]]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
William P. Orrick, Jun 24 2015
STATUS
approved