login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259286 Triangle of polynomials P(n,y) of order n in y, generated by the extension to the variable y of the e.g.f. of A259239(n), i.e., exp(y*(x-sqrt(1-x^2)+1)). 0
1, 1, 1, 0, 3, 1, 3, 3, 6, 1, 0, 15, 15, 10, 1, 45, 45, 60, 45, 15, 1, 0, 315, 315, 210, 105, 21, 1, 1575, 1575, 1890, 1365, 630, 210, 28, 1, 0, 14175, 14175, 9450, 4725, 1638, 378, 36, 1, 99225, 99225, 113400, 80325, 38745, 14175, 3780, 630, 45, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Explicit forms of the polynomials P(n,y) for n=1..6:

P(1,y) = y

P(2,y) = y + y^2

P(3,y) = 3*y^2 + y^3

P(4,y) = 3*y + 3*y^2 + 6*y^3 + 1*y^4

P(5,y) = 15*y^2 + 15*y^3 + 10*y^4 + 1*y^5

P(6,y) = 45*y + 45*y^2 + 60*y^3 + 45*y^4 + 15*y^5 + 1*y^6;

Sum(k=1..n, P(k,1) ) = A259239(n).

Also the Bell transform of the sequence "a(n)=n*doublefactorial(n-2)^2 if n is odd else 0^n". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016

LINKS

Table of n, a(n) for n=1..55.

EXAMPLE

Triangle begins:

  1;

  1,  1;

  0,  3,  1;

  3,  3,  6,  1;

  0, 15, 15, 10,  1;

MAPLE

# The function BellMatrix is defined in A264428.

# Adds (1, 0, 0, 0, ..) as column 0.

BellMatrix(n -> `if`(n::even, 0^n, n*doublefactorial(n-2)^2), 9); # Peter Luschny, Jan 29 2016

MATHEMATICA

BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];

B = BellMatrix[Function[n, Which[n==0, 1, EvenQ[n], 0, True, n*(n-2)!!^2]], rows = 12];

Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)

PROG

(PARI) row(n) = x='x+O('x^(n+1)); polcoeff(serlaplace(exp(y*(x-sqrt(1-x^2)+1))), n, 'x);

tabl(nn) = for (n=1, nn, print(Vecrev(row(n)/y))) \\ Michel Marcus, Jun 23 2015

CROSSREFS

Cf. A259239.

Sequence in context: A186422 A165027 A078555 * A087891 A005885 A205145

Adjacent sequences:  A259283 A259284 A259285 * A259287 A259288 A259289

KEYWORD

nonn,tabl

AUTHOR

Karol A. Penson and Katarzyna Gorska, Jun 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 08:36 EST 2019. Contains 329217 sequences. (Running on oeis4.)