login
A259077
Non-palindromic composite numbers such that n' = [Rev(n)]', where n' is the arithmetic derivative of n.
0
366, 663, 3245, 3685, 5423, 5863, 8178, 8718, 14269, 15167, 16237, 18449, 18977, 36679, 73261, 76151, 77981, 94481, 96241, 97663, 140941, 149041, 150251, 152051, 196891, 198691, 302363, 308459, 319853, 335148, 358913, 363203, 841533, 921239, 932129, 954803, 958099, 990859
OFFSET
1,1
FORMULA
Solutions to A003415(n) = A003415(A004086(n)), with A004086(n) <> n.
EXAMPLE
366' = 311 = 663';
3245' = 999 = 5423'; etc.
MAPLE
with(numtheory): T:=proc(w) local x, y, z; x:=w; y:=0;
for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10);
od; y; end: P:=proc(q) local a, b, p, n;
for n from 1 to q do if not isprime(n) then if n<>T(n) then a:=n*add(op(2, p)/op(1, p), p=ifactors(n)[2]);
b:=T(n)*add(op(2, p)/op(1, p), p=ifactors(T(n))[2]);
if a=b then print(n); fi; fi; fi; od; end: P(10^9);
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Jun 18 2015
STATUS
approved