%I #16 Nov 12 2015 06:02:11
%S 2,3,4,6,7,8,9,11,14,18,19,21,23,25,30,32,33,42,44,47,57,59,63,65,71,
%T 76,77,82,83,85,86,93,97,107,108,111,116,117,118,121,127,131,135,137,
%U 139,143,151,153,154,162,164,167,175,177,183,185,188,189,194,195
%N Index of the Lucas numbers in A258740.
%C This sequence is probably finite with 228 terms. The probable last term of the sequence is a(228) = 6903, and the corresponding Lucas number A000032(6903) = 4382083468497... 10084254004 contains 1443 decimal digits.
%H Michel Lagneau, <a href="/A258938/b258938.txt">Table of n, a(n) for n = 1..228</a>
%e 7 is in the sequence because L(7)= A000032(7) = 29 = A258740(5) where 2+9=11 > 7.
%p with(combinat,fibonacci):with(numtheory):
%p a:=n->2*fibonacci(n-1)+fibonacci(n):
%p for m from 1 to 400 do:
%p x:=a(m):y:=convert(x,base,10):n1:=nops(y):
%p s:=sum('y[i]', 'i'=1..n1):
%p if s>m
%p then
%p printf(`%d, `,m):
%p else
%p fi:
%p od:
%o (PARI) lista(nn) = {for(n=1, nn, if (sumdigits(l = fibonacci(n+1) + fibonacci(n-1)) > n, print1(n, ", "))); } \\ _Altug Alkan_, Nov 08 2015
%Y Cf. A000032, A258740.
%K nonn,base
%O 1,1
%A _Michel Lagneau_, Nov 07 2015