|
|
A258735
|
|
Number of length n+5 0..3 arrays with at most one downstep in every n consecutive neighbor pairs.
|
|
1
|
|
|
4096, 11704, 20955, 35540, 59188, 92548, 138196, 199264, 279560, 383704, 517281, 687012, 900944, 1168660, 1501510, 1912864, 2418388, 3036344, 3787915, 4697556, 5793372, 7107524, 8676664, 10542400, 12751792, 15357880, 18420245, 22005604
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = (1/5040)*n^7 + (1/80)*n^6 + (241/720)*n^5 + (229/48)*n^4 + (15569/90)*n^3 + (58693/60)*n^2 + (175526/105)*n + 512 for n>3.
Empirical g.f.: x*(4096 - 21064*x + 42011*x^2 - 33764*x^3 - 7096*x^4 + 30588*x^5 - 9050*x^6- 20224*x^7 + 22372*x^8 - 9344*x^9 + 1476*x^10) / (1 - x)^8. - Colin Barker, Jan 26 2018
|
|
EXAMPLE
|
Some solutions for n=4:
..0....0....3....3....1....0....3....0....1....0....1....2....1....0....2....1
..0....0....2....3....3....2....3....0....3....0....2....2....1....0....1....1
..0....2....2....3....3....1....2....0....3....0....1....1....1....0....2....0
..1....2....2....0....0....1....2....0....0....0....1....1....1....0....2....0
..1....0....2....1....1....2....2....1....0....2....1....1....3....3....2....2
..2....1....3....1....3....2....3....1....2....0....2....1....3....2....3....3
..2....2....3....2....3....2....1....1....3....0....0....2....3....2....3....1
..2....2....0....1....1....2....1....1....0....0....1....0....3....2....0....2
..0....2....1....3....1....0....2....2....0....0....2....3....1....3....3....3
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|