|
|
A258734
|
|
Number of length n+4 0..3 arrays with at most one downstep in every n consecutive neighbor pairs.
|
|
1
|
|
|
1024, 3136, 6552, 12549, 21860, 35704, 55660, 83758, 122584, 175400, 246280, 340263, 463524, 623564, 829420, 1091896, 1423816, 1840300, 2359064, 3000745, 3789252, 4752144, 5921036, 7332034, 9026200, 11050048, 13456072, 16303307
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = (1/5040)*n^7 + (1/90)*n^6 + (19/72)*n^5 + (59/18)*n^4 + (47527/720)*n^3 + (14522/45)*n^2 + (39961/84)*n + 100 for n>2.
Empirical g.f.: x*(1024 - 5056*x + 10136*x^2 - 9403*x^3 + 988*x^4 + 7460*x^5 - 8940*x^6 + 5164*x^7 - 1576*x^8 + 204*x^9) / (1 - x)^8. - Colin Barker, Jan 26 2018
|
|
EXAMPLE
|
Some solutions for n=4:
..2....1....3....0....1....0....0....0....0....3....0....2....1....2....2....2
..1....3....3....2....1....2....2....1....0....3....0....2....0....3....3....0
..2....0....2....0....0....0....3....3....1....0....3....2....1....0....0....0
..2....0....2....2....1....0....0....0....1....0....1....2....2....2....1....0
..3....0....2....2....1....1....0....0....0....0....2....2....2....2....2....1
..0....3....3....2....2....1....0....1....1....0....2....2....3....2....2....1
..1....2....3....1....2....1....3....1....1....2....3....3....0....1....2....1
..3....3....2....1....3....3....0....2....2....1....1....1....2....1....0....1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|