login
A258465
Number of partitions of n into parts of exactly 10 sorts which are introduced in ascending order.
3
1, 56, 1762, 41143, 795657, 13499449, 208050040, 2979881876, 40300054520, 520576172762, 6478447651345, 78185947269684, 919805200917658, 10591351937396242, 119764715367192468, 1333512940732309728, 14652754322423701707, 159182411488944508232
OFFSET
10,2
COMMENTS
In general, column k>1 of A256130 is asymptotic to c*k^n, where c = 1/(k!*Product_{n>=1} (1-1/k^n)) = 1/(k!*QPochhammer[1/k, 1/k]). - Vaclav Kotesovec, Jun 01 2015
LINKS
FORMULA
a(n) ~ c * 10^n, where c = 1/(10!*Product_{n>=1} (1-1/10^n)) = 1/(10!*QPochhammer[1/10, 1/10]) = 0.0000003096292864992979803727261336621564... . - Vaclav Kotesovec, Jun 01 2015
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):
a:= n-> T(n, 10):
seq(a(n), n=10..30);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, k b[n - i, i, k]]]];
T[n_, k_] := Sum[b[n, n, k - i] (-1)^i/(i! (k - i)!), {i, 0, k}];
Table[T[n, 10], {n, 10, 30}] (* Jean-François Alcover, Dec 07 2020, after Alois P. Heinz *)
CROSSREFS
Column k=10 of A256130.
Cf. A320552.
Sequence in context: A017719 A234761 A290607 * A050989 A333067 A140406
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 30 2015
STATUS
approved