login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258465 Number of partitions of n into parts of exactly 10 sorts which are introduced in ascending order. 3
1, 56, 1762, 41143, 795657, 13499449, 208050040, 2979881876, 40300054520, 520576172762, 6478447651345, 78185947269684, 919805200917658, 10591351937396242, 119764715367192468, 1333512940732309728, 14652754322423701707, 159182411488944508232 (list; graph; refs; listen; history; text; internal format)
OFFSET

10,2

COMMENTS

In general, column k>1 of A256130 is asymptotic to c*k^n, where c = 1/(k!*Product_{n>=1} (1-1/k^n)) = 1/(k!*QPochhammer[1/k, 1/k]). - Vaclav Kotesovec, Jun 01 2015

LINKS

Alois P. Heinz, Table of n, a(n) for n = 10..1000

FORMULA

a(n) ~ c * 10^n, where c = 1/(10!*Product_{n>=1} (1-1/10^n)) = 1/(10!*QPochhammer[1/10, 1/10]) = 0.0000003096292864992979803727261336621564... . - Vaclav Kotesovec, Jun 01 2015

MAPLE

b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,

      b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))

    end:

T:= (n, k)-> add(b(n$2, k-i)*(-1)^i/(i!*(k-i)!), i=0..k):

a:= n-> T(n, 10):

seq(a(n), n=10..30);

CROSSREFS

Column k=10 of A256130.

Cf. A320552.

Sequence in context: A017719 A234761 A290607 * A050989 A140406 A075512

Adjacent sequences:  A258462 A258463 A258464 * A258466 A258467 A258468

KEYWORD

nonn

AUTHOR

Alois P. Heinz, May 30 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 06:37 EST 2020. Contains 331033 sequences. (Running on oeis4.)