login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258327
Expansion of phi(x^3) / f(-x^2) in powers of x where phi(), f() are Ramanujan theta functions.
2
1, 0, 1, 2, 2, 2, 3, 4, 5, 6, 7, 10, 13, 14, 17, 22, 26, 30, 36, 44, 52, 60, 70, 84, 99, 112, 131, 156, 179, 204, 236, 274, 315, 358, 409, 472, 539, 608, 692, 792, 897, 1010, 1144, 1298, 1464, 1644, 1849, 2088, 2347, 2622, 2940, 3304, 3694, 4118, 4600, 5142
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x, x^2) / psi(-x) in powers of x where psi(), f() are Ramanujan theta functions.
Expansion of q^(-1/12) * eta(q^6)^5 / (eta(q^2) * eta(q^3)^2 * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ 0, 1, 2, 1, 0, -2, 0, 1, 2, 1, 0, 0, ...].
G.f.: Product_{k>0} (1 + x^k)^2 * (1 - x^k + x^(2*k))^3 * (1 + x^k + x^(2*k)) / (1 + x^(6*k))^2.
a(n) = (-1)^n * A256636(n).
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Jul 11 2016
EXAMPLE
G.f. = 1 + x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 5*x^8 + 6*x^9 + ...
G.f. = 1/q + q^23 + 2*q^35 + 2*q^47 + 2*q^59 + 3*q^71 + 4*q^83 + 5*q^95 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^3] / QPochhammer[ x^2], {x, 0, n}];
nmax = 50; CoefficientList[Series[Product[(1+x^(6*k-3)) / ((1-x^(6*k-2)) * (1-x^(6*k-3)) * (1-x^(6*k-4)) * (1+x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^5 / (eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^12 + A)^2), n))};
CROSSREFS
Cf. A256636.
Sequence in context: A118301 A018121 A256636 * A102240 A026837 A366916
KEYWORD
nonn
AUTHOR
Michael Somos, May 26 2015
STATUS
approved