login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258307 T(n,k) = 1/k! * Sum_{i=0..k} (-1)^(k-i) *C(k,i) * A258306(n,i); triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows. 5

%I

%S 1,1,2,1,5,2,14,9,1,43,28,3,141,114,21,1,490,421,82,4,1785,1750,442,

%T 38,1,6789,7114,1941,180,5,26809,30854,9868,1210,60,1,109632,134239,

%U 46337,6191,335,6,462755,609276,235035,37321,2700,87,1,2012441,2800134,1157603,199424,15806,560,7

%N T(n,k) = 1/k! * Sum_{i=0..k} (-1)^(k-i) *C(k,i) * A258306(n,i); triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.

%H Alois P. Heinz, <a href="/A258307/b258307.txt">Rows n = 0..200, flattened</a>

%e Triangle T(n,k) begins:

%e : 1;

%e : 1;

%e : 2, 1;

%e : 5, 2;

%e : 14, 9, 1;

%e : 43, 28, 3;

%e : 141, 114, 21, 1;

%e : 490, 421, 82, 4;

%e : 1785, 1750, 442, 38, 1;

%e : 6789, 7114, 1941, 180, 5;

%e : 26809, 30854, 9868, 1210, 60, 1;

%p b:= proc(x, y, t, k) option remember; `if`(y>x or y<0, 0,

%p `if`(x=0, 1, b(x-1, y-1, false, k)*`if`(t, (x+k*y)/y, 1)

%p +b(x-1, y, false, k) +b(x-1, y+1, true, k)))

%p end:

%p A:= (n, k)-> b(n, 0, false, k):

%p T:= proc(n, k) option remember;

%p add(A(n, i)*(-1)^(k-i)*binomial(k, i), i=0..k)/k!

%p end:

%p seq(seq(T(n, k), k=0..n/2), n=0..13);

%t b[x_, y_, t_, k_] := b[x, y, t, k] = If[y > x || y < 0, 0, If[x == 0, 1, b[x - 1, y - 1, False, k]*If[t, (x + k*y)/y, 1] + b[x - 1, y, False, k] + b[x - 1, y + 1, True, k]]];

%t A[n_, k_] := b[n, 0, False, k];

%t T[n_, k_] := T[n, k] = Sum[A[n, i]*(-1)^(k-i)*Binomial[k, i], {i, 0, k}]/ k!;

%t Table[T[n, k], {n, 0, 13}, {k, 0, n/2}] // Flatten (* _Jean-Fran├žois Alcover_, Jun 06 2018, from Maple *)

%Y Column k=0 gives A258312.

%Y Row sums give A258308.

%Y Cf. A258306, A258310.

%K nonn,tabf

%O 0,3

%A _Alois P. Heinz_, May 25 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 16:17 EDT 2019. Contains 326178 sequences. (Running on oeis4.)