login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258214
Primes formed by concatenating p^2 with q, where p, q are consecutive primes.
1
43, 257, 12113, 84131, 96137, 168143, 372167, 32041181, 120409349, 139129379, 292681547, 410881643, 516961727, 528529733, 863041937, 966289991, 10629611033, 10670891039, 11902811093, 16307291279, 21112091459, 25058891597, 29618411723, 31933691789, 35006411873
OFFSET
1,1
COMMENTS
All the terms in this sequence, except a(1), are congruent to 2 (mod 3).
LINKS
EXAMPLE
a(2) = 257 is prime formed by concatenation of (5^2) = 25 with 7.
a(3) = 12113 is prime formed by concatenation of (11^2) = 121 with 13.
MATHEMATICA
Select[Table[p = Prime[n]; FromDigits[Join[Flatten[ IntegerDigits[{p^2, NextPrime[p]}]]]], {n, 500}], PrimeQ]
Select[#[[1]]^2*10^IntegerLength[#[[2]]]+#[[2]]&/@Partition[Prime[ Range[ 300]], 2, 1], PrimeQ] (* Harvey P. Dale, Dec 05 2016 *)
PROG
(PARI) forprime(p = 1, 5000, k=eval(concat( Str(p^2), Str(nextprime(p+1)) )); if(isprime(k), print1(k, ", ")))
(Magma) [m: n in [1..300] | IsPrime(m) where m is Seqint(Intseq(NthPrime(n+1)) cat Intseq(NthPrime(n)^2))]; // Vincenzo Librandi, May 24 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, May 23 2015
STATUS
approved