OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
Expansion of eta(q^2)^9 * eta(q^9) * eta(q^36) / (eta(q)^3 * eta(q^3)^2 * eta(q^4)^3 * eta(q^12)^2 * eta(q^18)) in powers of q.
Euler transform of period 36 sequence [ 3, -6, 5, -3, 3, -4, 3, -3, 4, -6, 3, 1, 3, -6, 5, -3, 3, -4, 3, -3, 5, -6, 3, 1, 3, -6, 4, -3, 3, -4, 3, -3, 5, -6, 3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A164616.
EXAMPLE
G.f. = 1 + 3*q - 3*q^3 + 6*q^4 - 12*q^6 + 15*q^7 - 30*q^9 + 36*q^10 + ...
MATHEMATICA
QP=QPochhammer; A258108[n_] :=SeriesCoefficient[(QP[x^2]^9*QP[x^9]*QP[x^36])/(QP[x]^3*QP[x^3]^2*QP[x^4]^3*QP[x^12]^2*QP[x^18]), {x, 0, n}]; Table[A258108[n], {n, 0, 50}] (* G. C. Greubel, Oct 18 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^9 * eta(x^9 + A) * eta(x^36 + A) / (eta(x + A)^3 * eta(x^3 + A)^2 * eta(x^4 + A)^3 * eta(x^12 + A)^2 * eta(x^18 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 20 2015
STATUS
approved