login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258108
Expansion of b(-q) * b(q^6) / (b(q^3) * b(q^12)) in powers of q where b() is a cubic AGM theta function.
3
1, 3, 0, -3, 6, 0, -12, 15, 0, -30, 36, 0, -60, 78, 0, -117, 150, 0, -228, 276, 0, -420, 504, 0, -732, 885, 0, -1245, 1488, 0, -2088, 2454, 0, -3420, 3996, 0, -5460, 6378, 0, -8583, 9972, 0, -13344, 15378, 0, -20448, 23472, 0, -30876, 35379, 0, -46116, 52644
OFFSET
0,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
FORMULA
Expansion of eta(q^2)^9 * eta(q^9) * eta(q^36) / (eta(q)^3 * eta(q^3)^2 * eta(q^4)^3 * eta(q^12)^2 * eta(q^18)) in powers of q.
Euler transform of period 36 sequence [ 3, -6, 5, -3, 3, -4, 3, -3, 4, -6, 3, 1, 3, -6, 5, -3, 3, -4, 3, -3, 5, -6, 3, 1, 3, -6, 4, -3, 3, -4, 3, -3, 5, -6, 3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A164616.
a(3*n + 2) = 0. a(3*n + 1) = 3 * A132977(n). a(3*n) = -3 * A164617(n) unless n = 0.
EXAMPLE
G.f. = 1 + 3*q - 3*q^3 + 6*q^4 - 12*q^6 + 15*q^7 - 30*q^9 + 36*q^10 + ...
MATHEMATICA
QP=QPochhammer; A258108[n_] :=SeriesCoefficient[(QP[x^2]^9*QP[x^9]*QP[x^36])/(QP[x]^3*QP[x^3]^2*QP[x^4]^3*QP[x^12]^2*QP[x^18]), {x, 0, n}]; Table[A258108[n], {n, 0, 50}] (* G. C. Greubel, Oct 18 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^9 * eta(x^9 + A) * eta(x^36 + A) / (eta(x + A)^3 * eta(x^3 + A)^2 * eta(x^4 + A)^3 * eta(x^12 + A)^2 * eta(x^18 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 20 2015
STATUS
approved