login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258086 Decimal expansion of Integral_{0..infinity} exp(-x)/(1-x*exp(-x)). 1
1, 3, 5, 9, 0, 9, 8, 2, 7, 7, 1, 1, 3, 5, 4, 8, 2, 6, 4, 6, 4, 3, 5, 2, 4, 2, 0, 6, 0, 7, 5, 7, 2, 0, 7, 8, 7, 1, 1, 2, 8, 2, 8, 4, 5, 1, 0, 5, 1, 5, 6, 8, 6, 9, 4, 0, 6, 0, 6, 5, 2, 6, 3, 1, 6, 6, 5, 0, 1, 6, 5, 6, 7, 1, 3, 6, 5, 3, 4, 2, 1, 3, 0, 3, 2, 9, 0, 7, 6, 2, 6, 4, 7, 0, 9, 8, 5, 5, 3, 8, 3, 1, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..103.

MathOverflow, Upper bound of the waiting time of a sum process.

FORMULA

c = Sum_{i >= 0} i!/(i+1)^(i+1).

EXAMPLE

1.35909827711354826464352420607572078711282845105156869406...

MAPLE

evalf(Int(exp(-x)/(1-x*exp(-x)), x=0..infinity), 120); # Vaclav Kotesovec, May 19 2015

MATHEMATICA

c = NIntegrate[Exp[-x]/(1-x*Exp[-x]), {x, 0, Infinity}, WorkingPrecision -> 103]; RealDigits[c] // First

PROG

(PARI) default(realprecision, 120); sumpos(k=0, k!/(k+1)^(k+1)) \\ Vaclav Kotesovec, May 19 2015

CROSSREFS

Sequence in context: A067094 A272235 A058642 * A141251 A186190 A019739

Adjacent sequences:  A258083 A258084 A258085 * A258087 A258088 A258089

KEYWORD

nonn,cons,easy

AUTHOR

Jean-Fran├žois Alcover, May 19 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 8 05:46 EDT 2021. Contains 343653 sequences. (Running on oeis4.)