|
|
A257895
|
|
Square array read by ascending antidiagonals where T(n,k) is the mean number of maxima in a set of n random k-dimensional real vectors (denominators).
|
|
1
|
|
|
1, 1, 1, 1, 2, 1, 1, 6, 4, 1, 1, 12, 36, 8, 1, 1, 60, 144, 216, 16, 1, 1, 20, 3600, 1728, 1296, 32, 1, 1, 140, 3600, 216000, 20736, 7776, 64, 1, 1, 280, 176400, 72000, 12960000, 248832, 46656, 128, 1, 1, 2520, 705600, 24696000, 12960000, 777600000
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
LINKS
|
|
|
FORMULA
|
T(n,k) = Sum_{j=1..n} (-1)^(j-1)*j^(1-k)*binomial(n,j).
|
|
EXAMPLE
|
Array of fractions begins:
1, 1, 1, 1, 1, 1, ...
1, 3/2, 7/4, 15/8, 31/16, 63/32, ...
1, 11/6, 85/36, 575/216, 3661/1296, 22631/7776, ...
1, 25/12, 415/144, 5845/1728, 76111/20736, 952525/248832, ...
1, 137/60, 12019/3600, 874853/216000, 58067611/12960000, 3673451957/777600000, ...
1, 49/20, 13489/3600, 336581/72000, 68165041/12960000, 483900263/86400000, ...
...
Row 2 (denominators) is A000079 (powers of 2),
Row 6 is not in the OEIS.
Column 2 (denominators) is A002805 (denominators of harmonic numbers),
Column 4 is not in the OEIS.
|
|
MATHEMATICA
|
T[n_, k_] := Sum[(-1)^(j - 1)*j^(1 - k)*Binomial[n, j], {j, 1, n}]; Table[T[n - k + 1, k] // Denominator, {n, 1, 12}, {k, 1, n}] // Flatten
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|