login
A257861
Numbers n such that d(m) - f(m) >= n/2^f(m), where m = 2^n - 1, d(m) is the number of distinct prime factors of m, and f(m) is the number of Fermat primes less than or equal to 65537 that divide m.
2
24, 48, 64, 72, 80, 96, 112, 128, 144, 160, 192, 224, 240, 288, 320, 336, 352, 384, 416, 448, 480, 576, 672, 800, 864, 960, 1056, 1440
OFFSET
1,1
COMMENTS
For every n there exists a SierpiƄski/Riesel number with modulus a(n).
PROG
(PARI) lista(nn) = {vfp = [3, 5, 17, 257, 65537]; for(n = 1, nn, m = 2^n-1; dm = omega(m); fm = sum(k=1, #vfp, (m % vfp[k]) == 0); if (dm - fm >= n/2^fm, print1(n, ", ")); ); } \\ Michel Marcus, Jul 20 2015
CROSSREFS
Sequence in context: A338853 A343797 A292354 * A050497 A162282 A008606
KEYWORD
nonn,more
AUTHOR
STATUS
approved